domingo, 19 de diciembre de 2010
ANATOMIA DEL PIE
Nuestros pies están perfectamente estructurados para soportar el peso de nuestro cuerpo. Es la única parte del cuerpo en contacto con el suelo cuando estamos de pie o nos movemos y desempeñan distintas funciones:
Actúan como amortiguadores
Nos ayudan a mantener el equilibrio sobre superficies desiguales
Nos proveen de la propulsión, elasticidad y flexibilidad necesarias para caminar, saltar y correr.
El pie contiene 26 huesos (28 si incluimos los dos huesos sesamoideos), que están divididos en tres secciones: pie delantero, pie medio y pie trasero.
El pie delantero está compuesto por 5 metatarsos y 14 falanges. Los metatarsos forman un puente entre el pie medio y los dedos, y se extienden cuando el pie soporta peso. Cada uno de los huesos tiene una parte redondeada llamada cabeza metatarsal, que forman la planta del pie y soporta el peso del cuerpo.
Las falanges son los huesos de los dedos.
El pie medio está compuesto por 5 de los 7 tarsos. Los tarsos del pie medio son el cuboides, el escafoides y 3 cuñas cuneiformes.
El pie trasero está compuesto por los otros dos tarsos: el calcáneo y el astrágalo.
El astrágalo, o hueso del tobillo, está conectado con los dos huesos largos de la pierna inferior formando la articulación que permite al pie moverse hacia arriba y hacia abajo.
Una red de músculos, tendones y ligamentos mueven, soportan y mantienen en posición a los huesos del pie.
Los músculos tienen varias funciones importantes. Mueven los pies, levantan los dedos, estabilizan los dedos en el suelo, controlan los movimientos del tobillo y soportan el arco.
Los tendones conectan los músculos con los huesos y las articulaciones. El más grande es el tendón de Aquiles, que se extiende desde el músculo de la pantorrilla hasta el talón y permite correr, saltar, subir escaleras y ponerse de puntillas.
Los ligamentos mantienen los tendones en su lugar y estabilizan las articulaciones. El ligamento más largo del pie es la fascia plantar, que forma el arco entre el talón y los dedos y permite mantener el equilibrio y caminar.
Anatomía de la mama
La mama es una glándula de secreción externa , par, casi totalmente simétrica (la izquierda es de mayor tamaño que la derecha en la mayoría de los casos, siendo lo contrario muy raro) situada bajo la piel en el tórax de todos los individuos de la especie humana, encontrándose atrófica en el varón.
Cada mama tiene exteriormente el aspecto de una eminencia carnosa de tamaño y turgencia variables, coronada por una estructura de pigmentación oscura en forma de disco con centro sobreelevado, recibiendo aquélla el nombre de areola (o aréola) y éste el de pezón, donde se abren una cantidad variable de poros lactíferos (de doce a dieciocho) formando lo que se conoce como conjunto areola - pezón.
Embriológicamente el tejido glandular de la mama no es sino el producto del desarrollo desmesurado desde el punto de vista morfológico y funcional de glándulas sudoríparas modificadas de la piel, adaptadas para la producción de leche, un tipo de secreción de valor nutricional alto, adecuadamente adaptado a las necesidades de los recién nacidos y única fuente de alimentos durante los primeros meses de vida.
La alimentación con leche materna se conoce como lactancia. El acto de alimentar directamente al lactante se conoce como amamantamiento o tetada y se realiza mediante la succión directa desde el pezón por parte de la boca del niño.
La glándula mamaria consta de dos elementos fundamentales: los acinos glandulares, donde se encuentran las células productoras de leche y los ductos, conjunto de estructuras arboriformes o ramificadas, tubulares y huecas, cuyas luces confluyen progresivamente en canalículos más y más gruesos hasta terminar en uno de los doce a dieciocho galactóforos. Los galactóforos son dilataciones ductales a modo de reservorios situados inmediatamente por detrás del pezón.
La mama limita en su cara posterior con la aponeurosis o fascia del músculo pectoral y contiene abudante tejido graso allí donde no hay tejido glandular. La grasa y el tejido conectivo, junto con los ligamentos de Cooper (que unen la glándula a la piel) constituyen los elementos que dan forma y sostienen a la mama. La mama, además, contiene vasos arteriales, venosos y linfáticos, así como elementos nerviosos. No existe nada que se parezca a una cápsula continua envolviendo la mama. De hecho es muy común que exista tejido llamado aberrante o ectópico (literalmente fuera de sitio) en zonas bastante alejadas de la mama. No es raro encontrar tejido mamario en pleno hueco de la axila o bajo la piel, en la cara anterior del abdomen.
En la base del complejo areola-pezón se localizan ciertos elementos conocidos como células mioepiteliales, estrictamente epiteliales en cuanto a su origen, aunque con la particularidad de que son capaces de capaces de moverse a la manera de las fibras musculares. Estas células mioepiteliales provocan la salida de la leche almacenada en los galatóforos y la erección del pezón ante estímulos como succión, roce, tacto y frío.
La mama experimenta cambios a lo largo del desarrollo del individuo. Salvo casos particulares, más o menos patológicos, la mama del varón se atrofia por completo o casi por completo, si bien el complejo areola - pezón nunca falta y siempre conserva una sensibilidad particular y la capacidad de fruncimiento de la areola y de erección del pezón ante los estímulos antes citados. Los varones sometidos a tratamiento con estrógenos pueden desarrollar acúmulos de grasa en forma de mama, lo que se conoce como pseudoginecomastia, si bien es frecuente que llegue a desarrollar verdaderas mamas, lo que se llama ginecomastia. Los varones obesos también suelen desarrollar una pseudoginecomastia.
En los individuos de corta edad, en condiciones normales, la mama permanece en un estado embrionario y no se desarrolla hasta la pubertad (sin embargo, la obesidad puede simular desarrollo mamario precoz o temprano). Las muchachas con frecuencia desarrollan las mamas de manera no simultánea, en forma de un botón embrionario retroareolar, frecuentemente algo excéntrico. Pronto se desarrolla el botón en el otro lado y en poco tiempo las dos mamas van adquiriendo su aspecto habitual.
Durante el embarazo las mamas se vuelven turgentes y aumentan de tamaño.
La pigmentación de la piel de la areola y del pezón aumenta muy notablemente y aparecen una pequeñas eminencias granulares en los bordes de las areolas conocidos como tubérculos de Morgagni, correspondientes al desarrollo de glándulas sebáceas prominentes. La circulación de la mama aumenta y se hacen patentes las venas superficiales, sobre todo en las mujeres de raza caucásica, efecto que se incrementa durante la lactancia. Los pezones se ensanchan y por los poros lactíferos se expulsan, de manera más o menos patente, cilindros de un material acelular, espeso, llamados comedones que corresponden a tapones de queratina que hasta entonces obturaban los ductos en su extremo final.
En casos aislados existen individuos con más de dos glándulas, lo que se conoce como polimastia.
Cada mama "de más" se denomina "mama supernumeraria" y tiene una situación anormal, aunque casi siempre se localizará dentro de una línea imaginaria situada a cada lado del cuerpo, desde el vértice de la axila hasta la cara lateral del labio mayor de la vulva (base del escroto en el varón) del mismo lado.
La presencia de pezones supernumerarios se conoce como politelia.
EL VERDADERO PADRE DE LA ANATOMÍA
A la gloria que deriva de sus obras maestras, en el campo del arte y de sus actividades como ingeniero, científico e inventor, Leonardo hubiera podido agregar la de “Padre de la Anatomía”, si durante dos siglos, sus dibujos a lápiz no hubieran quedado sepultados.
No fue hasta que en 1784 fueron sacados a luz por William Hunter quien comento que Leonardo Da Vinci “Es el más grande anatomista de sus tiempos”. Este material se reprodujo de forma adecuada durante el último cuarto del siglo XVIII.
Sorprendentemente modernos por la exactitud y por la demostración del conocimiento fisiológico, estas ilustraciones representaban el profundo estudio de la anatomía muscular que solo había sido captada por los escultores griegos.
Da Vinci estaba convencido de que la investigación de la anatomía artística, solo podía aumentar en la mesa de disecciones. Es muy probable que haya estudiado anatomía Galénica, Guyista o de Mondino, pero en su trabajo el era su mejor maestro.
Cuando estaba en Roma al servicio de Cesar Borgia, efectuó alumbrándose con velas más de 30 disecciones de cadáveres en el deposito del Hospital del Espíritu Santo, donde realizó alrededor de un millar de dibujos.
La técnica anatómica que utilizo era digna de su talento: inyectaba cera liquida en las cavidades corporales para poder reproducir la estructura exacta de los órganos.
Auxiliado por este sistema, estudio la forma del corazón y las arterias coronarias, pero cometió el error de no apreciar con exactitud el tabique que divide la parte derecha e izquierda del corazón, de lo contrario hubiera descubierto la circulación de la sangre.
De los pulmones describió las ramificaciones de los bronquios y reprodujo sus observaciones en un dibujo magnífico.
Del l útero describió las membranas que envuelven al feto de la siguiente manera: “Dentro de la matriz el niño tiene 3 capas que lo circundan, de esta la primera se denomina Amnios, la segunda Secundina y la tercera Alantoides, esta última se une a la matriz mediante los cotiledones y todas convergen en el ombligo, que esta compuesto de venas”.
Fue el primero que investigo la localización y ramificación de los nervios craneanos.
En efecto de aquellos dibujos y apuntes debió de haber nacido un gran tratado de anatomía que Leonardo pensaba realizar junto con el Verones Marco Antonio Della Torre, a quien Vesario atribuyo el merito de haber intentado implantar nuevos métodos para la enseñanza de la estructura corporal.
Cuando Leonardo murió en Amboise, en 1519 a los 67 años estaba al servicio de Francisco Melzi y sus investigaciones fueron donadas a la biblioteca Ambrosiana de Milan. El resto, que era una cantidad mayor se disperso a causa de la guerra. En la actualidad los manuscritos mas importantes de Leonardo se guardan en la biblioteca del castillo real de Windsor.
TECNOLOGÍA EN ANATOMÍA PATOLÓGICA
La Anatomía Patológica precisa de la Tecnología
El elemento imprescindible en el ejercicio de nuestra especialidad es el microscopio,simple, múltiple, conectado a un vídeo, a un monitor de televisión o a un aparataje más complejo; puede poseer luz ultravioleta, prismas de polarización u otros complementos más sofisticados. La culminación de la complejidad es el microscopio electrónico. La Microscopía electrónica, cuya mayor expansión tuvo lugar hace dos o tres décadas, ha cedido protagonismo en la actualidad a otras tecnologías que han emergido en los últimos diez años, no habiendo perdido sin embargo su vigencia.
Figura 4. Bloques de parafina conteniendo el tejido impregnado en ella, en sus correspondientes cassetes, en la parte inferior. En la parte superior laminillas histológicas teñidas con hematoxilina-eosina.
Para llegar a obtener la laminilla histológica (Fig. 4), con la que observamos al microscopio la muestra tisular, necesitamos que el material orgánico pase por una serie de procesos; es preciso fijar el tejido, en primer lugar; para ello, básicamente, se utiliza formol tamponado; posteriormente, debemos obtener una lámina muy fina (escasas micras) de las zonas seleccionadas; para ello, hay que endurecer el tejido y eso se logra a través de su impregnación en parafina o de su congelación. Este procedimiento de congelación sólo se utiliza en las biopsias intraoperatorias o para detectar enzimas, hormonas, reacciones de tipo antígeno-anticuerpo o algunas alteraciones genéticas. Todos estos procesos han adquirido una gran automatización, tanto en las técnicas de inclusión del material en parafina, como de fijación o de tinción. Actualmente existen aparatos automáticos para la inclusión del tejido en parafina, para las tinciones rutinarias (Fig. 5) y para estudios inmunohistoquímicos (Fig. 6); todo ello ha contribuido a un mayor ahorro, a una uniformidad en estas técnicas y a una disminución de la contaminación de las muestras y del medio ambiente; en este sentido, existen aparatos compactos que evitan, en gran medida, la salida al exterior de gases tóxicos o irritantes (formol, xilol, etc.).
Figura 5. Teñidor y montador, automáticos, de laminillas histológicas.
Figura 6. Teñidor automático para técnicas de inmunohistoquímica.
El otro aparato, imprescindible en un Servicio de Anatomía Patológica, es el microtomo; con él logramos obtener secciones histológicas de escasas micras a partir del tejido incluido en parafina (microtomo convencional, de rotación), en tejido congelado (criostato) o en tejido incluido en plástico para estudio ultraestructural (ultramicrotomo).
También, últimamente, se está observando un gran desarrollo en el aparataje que ofrece avanzada automatización en el diagnóstico citológico. De hecho se han desarrollado sistemas de despistaje citológico ginecológico a través de ordenadores. Las nuevas tecnologías han permitido, además, realizar técnicas de hibridación "in situ" en muestras celulares, para el diagnóstico de enfermedades virales o tumorales, basadas en la desnaturalización del DNA cromosómico por calor (95º)(20), o de técnicas de Biología molecular, usadas también en el diagnóstico de tumores o de enfermedades, de Citometría de flujo(21,22) o de imagen(23-25), Ag-Nor(26,27), etc.
Lo más novedoso resulta, no obstante, la posibilidad de incluir imágenes en una red, previa digitalización(28); con ello se puede propiciar una consulta entre dos o más Centros. El continuo desarrollo de nuevas tecnologías en este área está permitiendo que las imágenes tengan cada vez mayor definición y que el diagnóstico, a través de una pantalla de ordenador, sea más fiable(29-35).
Los ecógrafos, utilizados a veces en autopsias(36) o en la realización de punción-aspiración de órganos dirigida, así como los aparatos de radiodiagnóstico utilizados rutinariamente en las autopsias fetales o en piezas quirúrgicas óseas o con calcificaciones, son también empleados por el patólogo.
Existen otras herramientas, que no por ser menos costosas son menos relevantes: aparatos para el marcaje automático de laminillas histológicas y de bloques de parafina, por ejemplo, que evitan confusiones numéricas y de identificación; sierras automáticas, balanzas de precisión, dispensadores de parafina, mesas de tallado de piezas, centrífugas, congeladores, estufas, etc.
En medio de toda esta tecnología de tipo mecánico, surge el ordenador que ha venido a simplificar un trabajo que, en sus sistemas de información y archivo, puede ser muy sofisticado.
De todo ello se deduce la relación que la especialidad debe establecer con otras disciplinas, en principio ajenas a la Medicina, pero de las que se vale y a las que a su vez presta servicio.
1. Está relacionada con la Química, dada su gran utilización de productos químicos. Todos los procedimientos básicos de inclusión del tejido en parafina para su posterior estudio, y la obtención de la laminilla histológica para estudiar el tejido en el microscopio, se basan en cambios de presiones celulares, deshidratación-hidratación y en afinidades tintoriales de tipo químico. También el estudio histológico permite la detección y cuantificación de elementos o partículas, como hierro en tejido hepático en la Hemocromatosis; sílice en tejido pulmonar en la Silicosis (Fig. 7); detección de cobre, asbesto, etc. en diferentes tejidos.
Habitualmente se usa, para lograr la fijación tisular, el formol tamponado, pero también se pueden usar otros medios líquidos químicos, no específicamente fijadores, como la solución de Bouin que permite, además, una decalcificación leve en cilindros óseos o la fijación de la meiosis en las biopsias de testículo, logrando un estudio más adecuado de las células germinales en la infertilidad. Hay biopsias o piezas quirúrgicas, generalmente muestras óseas, que precisan decalcificación, si no se cuenta con infraestructura necesaria para su estudio sin decalcificar. La investigación de nuevos productos químicos es constante(37); necesitamos fijadores menos tóxicos e irritantes y que no decoloren el tejido si es posible, y decalcificantes que permitan un decalcificación rápida, preservando la celularidad en condiciones óptimas. La investigación de los procedimientos de decalcificación y desmineralización ha propiciado el desarrollo de la Paleopatología, en fósiles*.
También es motivo de preocupación y de estudio el tratamiento que se debe dar a los desechos que se producen en los Servicios de Anatomía Patológica, sean contaminantes o no, para preservar el medio ambiente; algunas soluciones dadas al problema están basadas en reacciones químicas.
La Citometría de ADN asistida por imagen, tiene también una base citoquímica, la reacción de Feulgen; es una técnica que se utiliza para la detección de grupos aldehído que se generan en el núcleo de la célula(23).
2. Su relación con la Física y la Mecánica se desprende de lo anteriormente expuesto. Todos los procedimientos en Anatomía Patológica precisan de una perfecta tecnología que permita obtener secciones finas de un tejido, necesarias como hemos dicho, para hacer el diagnóstico; ellas se consiguen a través del microtomo, ya citado anteriormente: de congelación (criostato) usado en las biopsias intraoperatorias, en algunas técnicas de inmunohistoquímica, en inmunofluorescencia y en biología molecular; de rotación, para material incluido en parafina, o de otros microtomos más especializados: para realizar grandes secciones (cerebro, cerebrotomo), o para muestras no decalcificadas (hueso), o para realizar cortes semifinos, para estudios de microscopía electrónica (ultramicrotomo). Teñidores automáticos de tejidos y aparatos de inclusión en parafina, extractores y transformadores de residuos (gaseosos, líquidos, sólidos), y todo el aparataje anteriormente citado: centrífugas, congeladores, marcadores de laminillas y de bloques de parafina, etc., resultan imprescindibles en el trabajo rutinario. También la tecnología ha llegado al transporte de las muestras y en muchos Servicios se utilizan tubos neumáticos para su envío, sobre todo ante la urgencia de la biopsia intraoperatoria.
También existe una base física e instrumental en la Citometría de imagen de ADN (ley de Lambert Beer), así como en la Citometría de flujo laminar (dispersión de la luz y fluorescencia): las señales de luz dispersa y de fluorescencia son recibidas por células fotoeléctricas que convierten los fotones en pulsos eléctricos(38).
3. La relación con las Matemáticas ha quedado establecida en varios puntos: necesitan programas estadísticos en la labor asistencial, para controlar el gasto, para realizar controles de calidad, trabajos de investigación, publicaciones, etc; los algoritmos son utilizados para cualquier tipo de medición matemática, incluso para cuantificar la actividad asistencial.
Las técnicas de Morfometría, basadas en fórmulas matemáticas, son empleadas en la realización de recuentos, medición de áreas y volúmenes en una laminilla histológica, donde el tejido, o las células, están depositados(39,40); por ejemplo para medir la invasión en profundidad de algunos tumores de piel (Melanomas); para hacer recuentos porcentuales de las células germinales en los tubos seminíferos, en sus diferentes fases de maduración, en los estudios de infertilidad masculina (Fig. 8); para realizar mediciones de la invasión en profundidad en el cáncer de útero etc.(21,39,40).
Con los sistemas automáticos de identificación de modificaciones nucleares en Citología, observamos, a través de coordenadas marcadas por ordenador, las alteraciones nucleares detectadas por medio del programa instalado; las imágenes digitalizadas, que representan un amplio espectro de células anormales de un frotis, son introducidas en un circuito de redes neuronales (inteligencia artificial); los objetos con valores más altos asignados por la red neuronal, son seleccionados y almacenados en un disco óptico; luego se exponen en un monitor de vídeo de alta resolución; en cada pantalla se pueden observar hasta 64 cuadros; un programa informático previamente instalado ayuda a clasificar. Este Sistema está especialmente indicado como Control de calidad en Citología, o bien para realizar el despistaje (screening) primario.
También en Documentación médica y, por tanto anatomopatológica, se usan programas de ordenador y digitalizadores de imágenes que permiten una presentación uniforme, clara y cuidada de las Comunicaciones científicas.
En Citometría de ADN asistido por imagen, los algoritmos diagnósticos permiten obtener parámetros de malignidad: índice de malignidad y grado de malignidad, utilizando el índice de Böcking. Estas tecnologías han sido objeto de múltiples publicaciones(21,23), ya que son rutinariamente utilizadas en muchos hospitales.
4. La relación con la Telecomunicación ha experimentado un impulso muy considerable en los últimos cinco años. Así, la utilización de la Telepatología para realizar interconsultas, entre hospitales o entre éstos y centros de salud, a través de la red RDSI, en tiempo real o diferido, con imágenes estáticas o en movimiento, incluso con la manipulación de la platina del microscopio por el consultante, es ya posible*( 41). La digitalización ha permitido el almacenamiento y el transporte de la información; se han desarrollado Vídeo-conferencias(42,43), Seminarios, Sesiones Clínico-Patológicas y consultas diagnósticas a través de redes(44-57), tanto de área local (LAN) como de área extensa (WAN) o de Internet.
A través de la red llegan los datos y sólamente es necesario disponer de la instrumentación adecuada para su visualización; pero ¿puede el especialista diagnosticar sobre la pantalla de un monitor?. Esto dependerá de la calidad de la imagen y ella a su vez de la luminancia (cantidad de luz visible emitida por el monitor), del rango dinámico (relación máx/mín luminancia percibida), del ruido (fluctuación luminancia con entrada constante), de la distorsión (desplazamiento geométrico (x,y) de un pixel)* * y, en definitiva, de la resolución (el detalle más pequeño que puede ser discernido o medido en una presentación visual) y que depende del tamaño del punto del haz de electrones, del ancho de banda de la señal y del número de líneas (raster) del monitor en cada ciclo de refresco(40).
Existen dos modalidades básicas de transmisión de datos multimedia(41): a) estática o "diferida": la información se almacena en archivos para cada paciente o es enviada al terminal del especialista consultado, quien en el momento oportuno, usando un código de identificación, abrirá ese archivo. Hay que evitar accesos indeseados y deben ponerse todos los medios necesarios para que no exista sabotaje y no se vulnere la obligada "confidencialidad y privacidad"; b) interactivo o "en vivo": se trata de videoconferencias en tiempo real; esta modalidad exige una red a prueba de fallos, rápida y potente. Puede ser suficiente la disponibilidad de 1 a 3 accesos básicos (2 a 6 líneas para datos, voz e imagen) de redes digitales de 64-Kbps, denominadas RDSI en España e ISDN en terminología internacional y ya anteriormente citadas.
La enseñanza universitaria de la Anatomía Patológica es de más fácil acceso y comprensión, a través de imágenes y textos, intercomunicados por medio de un ordenador(58,59). Se trata de entornos virtuales para la formación en Patología; alguna de las modalidades(59) consiste en páginas Web, que utilizan Java Script para dar un aspecto más dinámico y Java para los forums de discusión. Es un concepto innovador en la enseñanza a distancia, ya que permite a los instructores crear lecciones e introducir contenidos en la base de datos vía Internet, y a los alumnos acceder "on line" a esa información. En España existen algunas universidades con experiencia en ese tipo de docencia(58-60).
En definitiva, lo que la Patología espera de la Ingeniería, (cuya práctica requiere un conocimiento teórico de las leyes básicas de la física, la matemática, la informática, la metalurgia y la química), es que el ingeniero pueda combinar dicha teoría con la apreciación práctica de las necesidades. Es preciso realizar un trabajo conjunto en la búsqueda de la mejora de todos los equipos (Hardware y Software), de las redes de comunicación (Internet, Intranet, etc.) y de los sistemas de documentación.
La Tecnología precisa de la Anatomía Patológica
La aportación de la Anatomía Patológica al desarrollo tecnológico, además de colaborar de forma muy directa con los profesionales de las disciplinas citadas, intercambiando información, cumple una misión directa e insustituible en la aplicación de las tecnologías utilizadas en el diagnóstico y en el tratamiento de las enfermedades.
La posibilidad de comparar los hallazgos radiológicos o de cualquier otro procedimiento de imagen, como T.A.C., Resonancia nuclear magnética, Ecografía, con los hallazgos reales (Fig. 9), expresados a través de la laminilla histológica, en el diagnóstico definitivo efectuado por el patólogo, ha contribuido al mayor desarrollo de dichos métodos diagnósticos y a una mayor fiabilidad, en la búsqueda constante de la precisión diagnóstica.
Todo médico sabe que la adecuada conjunción entre una observación clínica, radiológica, endoscópica, etc. y el diagnóstico anatomopatológico, da un fundamento verdaderamente científico a la Medicina.
El elemento imprescindible en el ejercicio de nuestra especialidad es el microscopio,simple, múltiple, conectado a un vídeo, a un monitor de televisión o a un aparataje más complejo; puede poseer luz ultravioleta, prismas de polarización u otros complementos más sofisticados. La culminación de la complejidad es el microscopio electrónico. La Microscopía electrónica, cuya mayor expansión tuvo lugar hace dos o tres décadas, ha cedido protagonismo en la actualidad a otras tecnologías que han emergido en los últimos diez años, no habiendo perdido sin embargo su vigencia.
Figura 4. Bloques de parafina conteniendo el tejido impregnado en ella, en sus correspondientes cassetes, en la parte inferior. En la parte superior laminillas histológicas teñidas con hematoxilina-eosina.
Para llegar a obtener la laminilla histológica (Fig. 4), con la que observamos al microscopio la muestra tisular, necesitamos que el material orgánico pase por una serie de procesos; es preciso fijar el tejido, en primer lugar; para ello, básicamente, se utiliza formol tamponado; posteriormente, debemos obtener una lámina muy fina (escasas micras) de las zonas seleccionadas; para ello, hay que endurecer el tejido y eso se logra a través de su impregnación en parafina o de su congelación. Este procedimiento de congelación sólo se utiliza en las biopsias intraoperatorias o para detectar enzimas, hormonas, reacciones de tipo antígeno-anticuerpo o algunas alteraciones genéticas. Todos estos procesos han adquirido una gran automatización, tanto en las técnicas de inclusión del material en parafina, como de fijación o de tinción. Actualmente existen aparatos automáticos para la inclusión del tejido en parafina, para las tinciones rutinarias (Fig. 5) y para estudios inmunohistoquímicos (Fig. 6); todo ello ha contribuido a un mayor ahorro, a una uniformidad en estas técnicas y a una disminución de la contaminación de las muestras y del medio ambiente; en este sentido, existen aparatos compactos que evitan, en gran medida, la salida al exterior de gases tóxicos o irritantes (formol, xilol, etc.).
Figura 5. Teñidor y montador, automáticos, de laminillas histológicas.
Figura 6. Teñidor automático para técnicas de inmunohistoquímica.
El otro aparato, imprescindible en un Servicio de Anatomía Patológica, es el microtomo; con él logramos obtener secciones histológicas de escasas micras a partir del tejido incluido en parafina (microtomo convencional, de rotación), en tejido congelado (criostato) o en tejido incluido en plástico para estudio ultraestructural (ultramicrotomo).
También, últimamente, se está observando un gran desarrollo en el aparataje que ofrece avanzada automatización en el diagnóstico citológico. De hecho se han desarrollado sistemas de despistaje citológico ginecológico a través de ordenadores. Las nuevas tecnologías han permitido, además, realizar técnicas de hibridación "in situ" en muestras celulares, para el diagnóstico de enfermedades virales o tumorales, basadas en la desnaturalización del DNA cromosómico por calor (95º)(20), o de técnicas de Biología molecular, usadas también en el diagnóstico de tumores o de enfermedades, de Citometría de flujo(21,22) o de imagen(23-25), Ag-Nor(26,27), etc.
Lo más novedoso resulta, no obstante, la posibilidad de incluir imágenes en una red, previa digitalización(28); con ello se puede propiciar una consulta entre dos o más Centros. El continuo desarrollo de nuevas tecnologías en este área está permitiendo que las imágenes tengan cada vez mayor definición y que el diagnóstico, a través de una pantalla de ordenador, sea más fiable(29-35).
Los ecógrafos, utilizados a veces en autopsias(36) o en la realización de punción-aspiración de órganos dirigida, así como los aparatos de radiodiagnóstico utilizados rutinariamente en las autopsias fetales o en piezas quirúrgicas óseas o con calcificaciones, son también empleados por el patólogo.
Existen otras herramientas, que no por ser menos costosas son menos relevantes: aparatos para el marcaje automático de laminillas histológicas y de bloques de parafina, por ejemplo, que evitan confusiones numéricas y de identificación; sierras automáticas, balanzas de precisión, dispensadores de parafina, mesas de tallado de piezas, centrífugas, congeladores, estufas, etc.
En medio de toda esta tecnología de tipo mecánico, surge el ordenador que ha venido a simplificar un trabajo que, en sus sistemas de información y archivo, puede ser muy sofisticado.
De todo ello se deduce la relación que la especialidad debe establecer con otras disciplinas, en principio ajenas a la Medicina, pero de las que se vale y a las que a su vez presta servicio.
1. Está relacionada con la Química, dada su gran utilización de productos químicos. Todos los procedimientos básicos de inclusión del tejido en parafina para su posterior estudio, y la obtención de la laminilla histológica para estudiar el tejido en el microscopio, se basan en cambios de presiones celulares, deshidratación-hidratación y en afinidades tintoriales de tipo químico. También el estudio histológico permite la detección y cuantificación de elementos o partículas, como hierro en tejido hepático en la Hemocromatosis; sílice en tejido pulmonar en la Silicosis (Fig. 7); detección de cobre, asbesto, etc. en diferentes tejidos.
Habitualmente se usa, para lograr la fijación tisular, el formol tamponado, pero también se pueden usar otros medios líquidos químicos, no específicamente fijadores, como la solución de Bouin que permite, además, una decalcificación leve en cilindros óseos o la fijación de la meiosis en las biopsias de testículo, logrando un estudio más adecuado de las células germinales en la infertilidad. Hay biopsias o piezas quirúrgicas, generalmente muestras óseas, que precisan decalcificación, si no se cuenta con infraestructura necesaria para su estudio sin decalcificar. La investigación de nuevos productos químicos es constante(37); necesitamos fijadores menos tóxicos e irritantes y que no decoloren el tejido si es posible, y decalcificantes que permitan un decalcificación rápida, preservando la celularidad en condiciones óptimas. La investigación de los procedimientos de decalcificación y desmineralización ha propiciado el desarrollo de la Paleopatología, en fósiles*.
También es motivo de preocupación y de estudio el tratamiento que se debe dar a los desechos que se producen en los Servicios de Anatomía Patológica, sean contaminantes o no, para preservar el medio ambiente; algunas soluciones dadas al problema están basadas en reacciones químicas.
La Citometría de ADN asistida por imagen, tiene también una base citoquímica, la reacción de Feulgen; es una técnica que se utiliza para la detección de grupos aldehído que se generan en el núcleo de la célula(23).
2. Su relación con la Física y la Mecánica se desprende de lo anteriormente expuesto. Todos los procedimientos en Anatomía Patológica precisan de una perfecta tecnología que permita obtener secciones finas de un tejido, necesarias como hemos dicho, para hacer el diagnóstico; ellas se consiguen a través del microtomo, ya citado anteriormente: de congelación (criostato) usado en las biopsias intraoperatorias, en algunas técnicas de inmunohistoquímica, en inmunofluorescencia y en biología molecular; de rotación, para material incluido en parafina, o de otros microtomos más especializados: para realizar grandes secciones (cerebro, cerebrotomo), o para muestras no decalcificadas (hueso), o para realizar cortes semifinos, para estudios de microscopía electrónica (ultramicrotomo). Teñidores automáticos de tejidos y aparatos de inclusión en parafina, extractores y transformadores de residuos (gaseosos, líquidos, sólidos), y todo el aparataje anteriormente citado: centrífugas, congeladores, marcadores de laminillas y de bloques de parafina, etc., resultan imprescindibles en el trabajo rutinario. También la tecnología ha llegado al transporte de las muestras y en muchos Servicios se utilizan tubos neumáticos para su envío, sobre todo ante la urgencia de la biopsia intraoperatoria.
También existe una base física e instrumental en la Citometría de imagen de ADN (ley de Lambert Beer), así como en la Citometría de flujo laminar (dispersión de la luz y fluorescencia): las señales de luz dispersa y de fluorescencia son recibidas por células fotoeléctricas que convierten los fotones en pulsos eléctricos(38).
3. La relación con las Matemáticas ha quedado establecida en varios puntos: necesitan programas estadísticos en la labor asistencial, para controlar el gasto, para realizar controles de calidad, trabajos de investigación, publicaciones, etc; los algoritmos son utilizados para cualquier tipo de medición matemática, incluso para cuantificar la actividad asistencial.
Las técnicas de Morfometría, basadas en fórmulas matemáticas, son empleadas en la realización de recuentos, medición de áreas y volúmenes en una laminilla histológica, donde el tejido, o las células, están depositados(39,40); por ejemplo para medir la invasión en profundidad de algunos tumores de piel (Melanomas); para hacer recuentos porcentuales de las células germinales en los tubos seminíferos, en sus diferentes fases de maduración, en los estudios de infertilidad masculina (Fig. 8); para realizar mediciones de la invasión en profundidad en el cáncer de útero etc.(21,39,40).
Con los sistemas automáticos de identificación de modificaciones nucleares en Citología, observamos, a través de coordenadas marcadas por ordenador, las alteraciones nucleares detectadas por medio del programa instalado; las imágenes digitalizadas, que representan un amplio espectro de células anormales de un frotis, son introducidas en un circuito de redes neuronales (inteligencia artificial); los objetos con valores más altos asignados por la red neuronal, son seleccionados y almacenados en un disco óptico; luego se exponen en un monitor de vídeo de alta resolución; en cada pantalla se pueden observar hasta 64 cuadros; un programa informático previamente instalado ayuda a clasificar. Este Sistema está especialmente indicado como Control de calidad en Citología, o bien para realizar el despistaje (screening) primario.
También en Documentación médica y, por tanto anatomopatológica, se usan programas de ordenador y digitalizadores de imágenes que permiten una presentación uniforme, clara y cuidada de las Comunicaciones científicas.
En Citometría de ADN asistido por imagen, los algoritmos diagnósticos permiten obtener parámetros de malignidad: índice de malignidad y grado de malignidad, utilizando el índice de Böcking. Estas tecnologías han sido objeto de múltiples publicaciones(21,23), ya que son rutinariamente utilizadas en muchos hospitales.
4. La relación con la Telecomunicación ha experimentado un impulso muy considerable en los últimos cinco años. Así, la utilización de la Telepatología para realizar interconsultas, entre hospitales o entre éstos y centros de salud, a través de la red RDSI, en tiempo real o diferido, con imágenes estáticas o en movimiento, incluso con la manipulación de la platina del microscopio por el consultante, es ya posible*( 41). La digitalización ha permitido el almacenamiento y el transporte de la información; se han desarrollado Vídeo-conferencias(42,43), Seminarios, Sesiones Clínico-Patológicas y consultas diagnósticas a través de redes(44-57), tanto de área local (LAN) como de área extensa (WAN) o de Internet.
A través de la red llegan los datos y sólamente es necesario disponer de la instrumentación adecuada para su visualización; pero ¿puede el especialista diagnosticar sobre la pantalla de un monitor?. Esto dependerá de la calidad de la imagen y ella a su vez de la luminancia (cantidad de luz visible emitida por el monitor), del rango dinámico (relación máx/mín luminancia percibida), del ruido (fluctuación luminancia con entrada constante), de la distorsión (desplazamiento geométrico (x,y) de un pixel)* * y, en definitiva, de la resolución (el detalle más pequeño que puede ser discernido o medido en una presentación visual) y que depende del tamaño del punto del haz de electrones, del ancho de banda de la señal y del número de líneas (raster) del monitor en cada ciclo de refresco(40).
Existen dos modalidades básicas de transmisión de datos multimedia(41): a) estática o "diferida": la información se almacena en archivos para cada paciente o es enviada al terminal del especialista consultado, quien en el momento oportuno, usando un código de identificación, abrirá ese archivo. Hay que evitar accesos indeseados y deben ponerse todos los medios necesarios para que no exista sabotaje y no se vulnere la obligada "confidencialidad y privacidad"; b) interactivo o "en vivo": se trata de videoconferencias en tiempo real; esta modalidad exige una red a prueba de fallos, rápida y potente. Puede ser suficiente la disponibilidad de 1 a 3 accesos básicos (2 a 6 líneas para datos, voz e imagen) de redes digitales de 64-Kbps, denominadas RDSI en España e ISDN en terminología internacional y ya anteriormente citadas.
La enseñanza universitaria de la Anatomía Patológica es de más fácil acceso y comprensión, a través de imágenes y textos, intercomunicados por medio de un ordenador(58,59). Se trata de entornos virtuales para la formación en Patología; alguna de las modalidades(59) consiste en páginas Web, que utilizan Java Script para dar un aspecto más dinámico y Java para los forums de discusión. Es un concepto innovador en la enseñanza a distancia, ya que permite a los instructores crear lecciones e introducir contenidos en la base de datos vía Internet, y a los alumnos acceder "on line" a esa información. En España existen algunas universidades con experiencia en ese tipo de docencia(58-60).
En definitiva, lo que la Patología espera de la Ingeniería, (cuya práctica requiere un conocimiento teórico de las leyes básicas de la física, la matemática, la informática, la metalurgia y la química), es que el ingeniero pueda combinar dicha teoría con la apreciación práctica de las necesidades. Es preciso realizar un trabajo conjunto en la búsqueda de la mejora de todos los equipos (Hardware y Software), de las redes de comunicación (Internet, Intranet, etc.) y de los sistemas de documentación.
La Tecnología precisa de la Anatomía Patológica
La aportación de la Anatomía Patológica al desarrollo tecnológico, además de colaborar de forma muy directa con los profesionales de las disciplinas citadas, intercambiando información, cumple una misión directa e insustituible en la aplicación de las tecnologías utilizadas en el diagnóstico y en el tratamiento de las enfermedades.
La posibilidad de comparar los hallazgos radiológicos o de cualquier otro procedimiento de imagen, como T.A.C., Resonancia nuclear magnética, Ecografía, con los hallazgos reales (Fig. 9), expresados a través de la laminilla histológica, en el diagnóstico definitivo efectuado por el patólogo, ha contribuido al mayor desarrollo de dichos métodos diagnósticos y a una mayor fiabilidad, en la búsqueda constante de la precisión diagnóstica.
Todo médico sabe que la adecuada conjunción entre una observación clínica, radiológica, endoscópica, etc. y el diagnóstico anatomopatológico, da un fundamento verdaderamente científico a la Medicina.
Anatomía Dental
¿Cuáles son las diferentes partes del diente?
Corona— Es la parte normalmente visible del diente al abrir la boca. La forma de la corona determina la función del diente. Por ejemplo, los dientes anteriores son afilados y sus bordes tienen forma de cincel para cortar, mientras que los molares tienen superficies planas para moler.
Borde de la encía— Es la línea de unión entre los dientes y las encías. Sin un cepillado correcto y sin el uso adecuado de hilo dental, el sarro y la placa se acumulan en esta línea y ocasionan gingivitis u otras enfermedades de las encías.
Raíz— Es la parte del diente que se inserta en el hueso. La raíz constituye las dos terceras partes del diente y lo sostiene al mismo en su lugar.
Esmalte— Es la capa externa del diente. El esmalte es el tejido más duro y mineralizado del cuerpo; sin embargo, puede deteriorarse si los dientes no reciben los cuidados necesarios.
Dentina— Es la capa del diente que está debajo del esmalte. Si la caries logra atravesar el esmalte, llega a la dentina, y allí millones de pequeños conductos conducen directamente a la pulpa dental, pudiendo infectarla.
Pulpa— Es el tejido blando que se encuentra en el centro de todos los dientes, donde están el tejido nervioso y los vasos sanguíneos. Si la caries alcanza la pulpa, por lo general, se siente dolor.
¿Cuáles son los diferentes tipos de dientes?
Cada diente tiene una tarea o función específica (utilice el arco dental en esta sección para localizar e identificar cada tipo de diente):
Incisivos— Los dientes anteriores con bordes afilados en forma de cincel (cuatro superiores y cuatro inferiores), son utilizados para cortar los alimentos.
Caninos— Dientes con forma puntiaguda (de cúspide) que se utilizan para desgarrar los alimentos. También se les denomina colmillos.
Premolares— Estos dientes tienen dos cúspides puntiagudas en su superficie de masticación. A veces son denominados bicúspides. La función de los premolares es aplastar y desgarrar.
Molares— Utilizados para moler, estos dientes tienen varias cúspides en su superficie de masticación.
jueves, 16 de diciembre de 2010
Anatomía del pelo humano
La mayoría de personas que no se dedican profesionalmente a la medicina capilar o bien a profesiones asociadas desconocen la anatomía del pelo humano, es poco frecuente que el ciudadano de a pie conozcamos las particularidades y composición de ese pelo que nos sale, pero este conocimiento es absolutamente indispensable para el profesional del sector, pues solo desde el conocimiento anatómico mas completo y experto será capaz de darnos solución a cualquier problemática capilar o vellosa que se nos aparezca, hoy sin ánimo ni mucho menos de ser exhaustivos ni que esto forme parte de ninguna formación o tesis en medicina capilar vamos a dar unas simples indicaciones para que el ciudadano y la ciudadana común pueda conocer y conozca con mayor conocimiento de causa su propio pelo.
Definicion.
El pelo por definición es la continuación de la piel cornificada, formada por una fibra de queratina y constituida por una raíz y un tallo.
El pelo se distribuye por todo el cuerpo humano con la única excepción de las zonas llamadas palmoplantares (es decir las palmas de las manes y las plantas de los pies), el ombligo y las mucosas, también hay que destacar que aunque le llamamos pelo a todo, en realidad pelo es lo que denominamos al que nos aparece en cualquier parte del cuerpo exceptuando al que nos aparece en la cabeza, a ese lo denominamos cabello.
Composición y cantidad.
Cada pelo consiste en una raíz que está ubicada en un folículo piloso y un tallo que sobresale por encima de la epidermis, es decir el tallo es la parte visible que vemos del pelo. La zona papilar del pelo está compuesta de tejido conjuntivo y vasos sanguíneos, que es lo que nutre al pelo y posibilita su crecimiento.
Cada ser humano adulto puede contar aproximadamente con unos 5.000.000 de pelos, de los cuales entre cien y ciento cincuenta mil corresponden al cuero cabelludo.
Para profundizar.
También podemos decir que evidentemente la anatomía del pelo, la composición, características y todas sus formas y condicionantes tienen muchas más características y particularidades, así como también cabe decir que hay muchos tipos de pelos, cabello, pero todo ello se aleja del objeto de este articulo y en todo caso es objeto de estudio más profundo para los interesados en la materia o bien para tratarlo en temas diferenciados y compartimentados pues de no hacerlo perderemos el autentico sentido divulgativo general de este articulo.
El © copyright del artículo "Anatomía del pelo humano.", publicado en Artículos Tratamientos Capilares pertenece al Instituto Clínico Capilar y Estético Tricoláser, S.L.. Para la reproducción, total o parcial, a través de online, medios impresos o a través de cualquier otro medio o formato de "Anatomía del pelo humano.", es nesesario el consentimiento de Instituto Clínico Capilar y Estético.
lunes, 6 de diciembre de 2010
Miguel Ángel pintó un cerebro en la Capilla Sixtina
Michelangelo di Lodovico Buonarroti (1475–1564), conocido como Miguel Ángel, era un genial artista y un maestro en anatomía, ciencia que aprendió diseccionando cadáveres. Un equipo de científicos de la Facultad de Medicina de la Universidad Johns Hopkins (EE.UU.) ha descubierto que en sus frescos de la bóveda de la Capilla Sixtina, concretamente en el denominado “La separación de la luz y las tinieblas”, el pintor italiano dibujó con gran precisión un cerebro y su unión con la columna vertebral en el cuello de la figura que representa a Dios.
Según publican los investigadores en la revista Neurosurgery, se trata de uno de los frescos menos famosos de la serie, pero es importante por encontrarse directamente sobre el altar de la capilla y porque representa "el inicio de la Creación". "Creemos que Miguel Ángel quiso realzar la importancia de este fresco ocultando esta sofisticada representación neuroanatómica en la imagen de Dios", afirman.
Posiblemente no es la única alusión al cerebro en la obra de Miguel Ángel. En 1990, el doctor Frank Lynn Meshberger publicó un articulo en JAMA explicando que las figuras y sombras situadas detrás de la de Dios en La creación de Adán son una imagen anatómicamente precisa del cerebro humano. Aunque algunos discrepan y aseguran que se trata de un caso de pareidolia, es decir, un tipo de ilusión óptica que consiste en la asociación de una forma con una figura reconocible.
*Artículo ampliado el 01/06 a raíz de las dudas planteadas por una lectora con referencia a estudios anteriores sobre las referencias neuroanatómicas en los frescos de Miguel Ángel*
¿Existe el punto G?
Tras analizar a 1.800 mujeres de entre 23 y 83 años, científicos británicos del King's College de Londres, dirigidos por el experto en epidemiología genética Tim Spector, han llegado a la conclusión de que la idea del misterioso punto G es totalmente subjetiva.
Su estudio se publica esta semana en la revista The Journal of Sexual Medicine.
En teoría, el punto G o punto Gräfenberg es un área con forma de vaina en la pared frontal de la vagina, detrás del hueso púbico y alrededor de la uretra, que cuando se estimula eleva los niveles de deseo sexual y aumenta la posibilidad de experimentar un orgasmo.
Desde que en 1981 la idea de su existencia fue popularizada por la profesora Beverly Whipple, de la Universidad Rutgers, en New Jersey, se han llevado a cabo múltiples estudios para confirmar su existencia. Las encuestas más recientes sitúan entre el 30 y el 54 % el porcentaje de mujeres que admiten experimentar este fenómeno.
Las mujeres que participaron en el estudio dirigido por Spector eran gemelas o mellizas.
A todas ellas se le preguntó si tenían el punto G. Si una de las gemelas idénticas respondía que sí, se esperaba que la otra, que tenía genes idénticos, también tuviera la zona erógena. Pero este patrón no se produjo.
"Las mujeres pueden argumentar que la dieta o el ejercicio ayuda a tener el punto G, pero en realidad es virtualmente imposible encontrar rastros reales", asegura Tim Spector.
"Este es el mayor estudio realizado hasta el momento, y muestra de manera casi certera que la idea del punto G es subjetiva", añadió.
Expertos como el ginecólogo Gedis Grudzinskas coinciden en el veredicto, y aseguran que el nuevo estudio revela “la diferencia que existe entre la ciencia popular y la biología o la anatomía”
viernes, 3 de diciembre de 2010
La Anatomía Interna de la Tierra
Hace 4500 millones de años la Tierra, nuestro querido y vapuleado planeta, asumió una forma claramente definida en el espacio y dentro del sistema solar. Durante este largo tiempo no ha dejado de transformarse y, naturalmente, se seguirá transformando.
Al principio era una masa de material fundido, pero durante los primeros 1 000 millones de años comenzó a condensarse, hasta formar una capa delgada externa más dura, la corteza, hace unos 3 500 millones de años.
La corteza se ha transformado a través de prolongados procesos cíclicos y periodos inmensos de tiempo.
¿QUÉ ES?
La Tierra no es una simple esfera inerte de materia. Su interior es muy complejo, sujeto a conjeturas, porque la actividad humana sólo ha logrado penetrar hasta un poco más de 10 km.
Según las teorías más aceptadas, la Tierra tendría la siguiente estructura interna, en forma de capas sucesivas:
1. La corteza: Es la parte más sólida y superficial, con un espesor de 40 km en los continentes y de 5 km debajo de los océanos. Es una delgada película constituida por elementos ligeros y de densidad relativamente baja. Hacia las zonas profundas la composición parece ser más rica en hierro y magnesio. La temperatura se eleva cerca en 1º C cada 32 metros de profundidad.
2. El manto: Abarca desde la corteza hasta una profundidad de 2 900 km. Se distinguen dos capas:
· El manto superior hasta los 600 km, está compuesto de elementos más pesados y derretidos, que reciben el nombre de magma, y que al salir a la superficie, por los volcanes, recibe el nombre de lava.
· El manto inferior se extiende hasta una profundidad de 2 900 km. Se supone que es líquido.
3. El núcleo exterior: Está formado de hierro y níquel, alcanza los 4 700 km. Es líquido y con altas temperaturas.
4. El núcleo interior: Es una esfera sólida de 1 200 km de radio. Su densidad varía de 14 hasta 16 y la presión es de 35 000 kg/mm2. Parece estar compuesto de fierro y níquel.
La Tierra no es redonda ni una esfera perfecta, sino achatada en los polos. El diámetro es de 12 756 km en el ecuador y de 12 713 km en los polos, o sea, es en cerca de 43 km menor en los polos. Esto se debe a la fuerza centrífuga, originada por la rotación.
La corteza terrestre y los continentes no fueron siempre como ahora durante la larga historia de la Tierra. Como la delgada película de la corteza terrestre flota sobre magma líquido, se ha ido desplazando y cambiando de forma, lo que se conoce como "el desplazamiento de los continentes".
¿SABÍAS QUÉ?
Al parecer la Tierra también se ha ido expandiendo. Se calcula que hace 4500 millones de años su diámetro era de 3 300 km; hace 600 millones de años de 12 000 km, y en la actualidad es de 12742 km. Esta expansión también ha influido en la forma y en el desplazamiento de los continentes.
Hace 200 millones de años había una sola masa terrestre llamada Pangea, que hace 180 millones de años empezó a desmembrarse: primero se dividió a lo largo de los océanos Índico y Atlántico. América del Norte se separó de África y la India de la Antártida en movida hacia el norte. Hace 135 millones de años Sudamérica comenzó a separarse de África y Groenlandia de Europa. Hace 65 millones de años los continente comenzaron a tomar su forma actual y Australia se separa de la Antártida.
Actualmente los continentes se siguen moviendo y América del Sur avanza hacia el Pacífico, presionada por el magma que sale ala superficie en la fisura del océano Atlántico.
Embriología
La embriología, o mejor dicho en términos modernos, biología del desarrollo, es la rama de la biología que se encarga de estudiar la morfogénesis, el desarrollo embrionario y nervioso desde la gametogénesis hasta el momento del nacimiento de los seres vivos. La formación y el desarrollo de un embrión es conocido como embriogénesis. Se trata de una disciplina ligada a la anatomía e histología.
El desarrollo de un embrión se inicia con la fertilización, que origina la formación del cigoto. Cuando finaliza el proceso durante el cual se generan todas las principales estructuras y órganos del producto (primer mes), el embrión se denominará feto.
La teratología (Gr. teratos, monstruo) es la división de la embriología y la anatomía patológica que trata del desarrollo anómalo (anomalías congénitas). Esta rama de la embriología se relaciona con los diversos factores genéticos o ambientales que alteran el desarrollo normal y producen los defectos congénitos.
Caracteristicas de la Embriología:
Llena el vacío entre el desarrollo prenatal y la Obstetricia, Medicina Perinatal, Pediatría y Anatomía Clínica.
Proporciona conocimientos acerca del comienzo de la vida humana y las modificaciones que se producen durante el desarrollo prenatal.
Resulta de utilidad en la práctica para ayudar a comprender las causas de las variaciones en la estructura humana.
Aclara la anatomía macroscópica y explica el modo en que se desarrollan las relaciones normales y anómalas.
El conocimiento que tienen los médicos acerca del desarrollo normal y de las causas de las malformaciones congénitas es necesario para proporcionar al embrión y al feto la mayor posibilidad de desarrollarse con normalidad.
Gran parte de la obstetricia moderna incluye la denominada embriología aplicada.
En la actualidad es posible el tratamiento quirúrgico del feto.
El reconocimiento y la corrección de la mayoría de los trastornos congénitos dependen del conocimiento del desarrollo normal y de los trastornos que puede sufrir.
La importancia de la embriología es obvia para los pediatras, ya que algunos de sus pacientes presentan anomalías congénitas derivadas de un desarrollo erróneo que causan la mayoría de las muertes durante la lactancia.
ANATOMIA VEGETAL
La anatomía vegetal es el campo de la Botánica que compete a las estructuras de los vegetales. Podríamos considerar la morfología vegetal como la manera de disponerse esas estructuras, que se ayudan de la taxonomía para clasificar.
Talo
En botánica, el talo equivale al conjunto de la raíz, el tallo y las hojas de las plantas metafitas.
También es el cuerpo vegetativo pluricelular característico de muchas algas y hongos. Puede existir algún grado de especialización entre las células, pero no hay tejidos diferenciados.
Los seres vivos con este tipo de organización dependen completamente de la humedad del medio para obtener agua.
El talo es una estructura de nivel celular, que en el caso de las algas macroscopicas, de las tres estirpes, alcanza su máxima expresión, dandosele a sus partes vegetativas, análogas a la de las plantas verdaderas, el nombre de rizoides (raíz), cauloide (tallo) y filoides (hojas).
Raíz
La raíz es el órgano de la planta que típicamente está debajo del suelo y pueden ser raíces primarias y raíces secundarias (comparar con el tallo). Existen algunas excepciones dado que algunas raíces pueden ser epigeas (que se encuentran sobre el suelo) o aéreas (que están muy por encima del suelo o encima del agua). Como puede verse, el definir la raíz señalando únicamente donde se encuentra este órgano de la planta puede llevar a problemas por lo que es más conveniente el definir a la raíz como la parte de la planta que no tiene hojas, y que al no tener hojas tampoco tiene nudos. Las estructuras internas entre tallos y raíces son muy diferentes.
Tallo
El tallo es el órgano vegetativo de las plantas cormofitas que crece en sentido contrario al de la raíz y sirve de sus tentáculos a las hojas, flores y frutos: los rizomas son tallos subterráneos.
Yema
En botánica la yema es un órgano complejo de los vegetales que se forma habitualmente en la axila de las hojas formado por un meristemo apical, (células con capacidad de división), a modo de botón escamoso (catáfilos) que dará lugar a hojas (foliíferas) y flores (floríferas).
Hoja
Una hoja es una estructura o un órgano de las plantas especializado para la fotosíntesis. Para cumplir con su propósito, una hoja es típicamente plana y fina, con el objetivo de exponer los cloroplastos que contienen las células (chlorenchyma) a la luz sobre una amplia superficie, y permitir que la luz penetre completamente en los tejidos finos. Es en las hojas donde, en la mayoría de las plantas, ocurre la fotosíntesis, la respiración y la transpiración.
Las hojas pueden almacenar alimento y agua, y se hallan modificadas en algunas plantas para otros propósitos.
Flor
La flor es la estructura reproductiva característica de las plantas llamadas fanerógamas. La función de la flor es producir semillas a través de la reproducción sexual. Para las plantas, las semillas son la próxima generación, y sirven como el principal medio a través del cual las especies se perpetúan y se propagan. Tras la fertilización, la flor da origen, por transformación de algunas de sus partes, a un fruto que contiene las semillas.
Fruto
En las plantas angiospermas, el fruto proviene del ovario de la flor tras ser fecundado. La pared del ovario se transforma en pared del fruto y se denomina pericarpio. La función del pericarpio es proteger a la semilla.
En las plantas gimnospermas y plantas sin flores no hay verdaderos frutos, aunque a estructuras reproductivas como los conos de los pinos, comúnmente se les tome por frutos.
Semilla
La semilla es la estructura mediante la que realizan la propagación las plantas que por ello se llaman espermatófitas (plantas con semilla). La semilla se produce por la maduración de un óvulo de una gimnosperma o de una angiosperma. Una semilla contiene un embrión del que puede desarrollarse una nueva planta bajo condiciones apropiadas. Pero también contiene una fuente de alimento almacenado y está envuelto en una cubierta protectora.
Talo
En botánica, el talo equivale al conjunto de la raíz, el tallo y las hojas de las plantas metafitas.
También es el cuerpo vegetativo pluricelular característico de muchas algas y hongos. Puede existir algún grado de especialización entre las células, pero no hay tejidos diferenciados.
Los seres vivos con este tipo de organización dependen completamente de la humedad del medio para obtener agua.
El talo es una estructura de nivel celular, que en el caso de las algas macroscopicas, de las tres estirpes, alcanza su máxima expresión, dandosele a sus partes vegetativas, análogas a la de las plantas verdaderas, el nombre de rizoides (raíz), cauloide (tallo) y filoides (hojas).
Raíz
La raíz es el órgano de la planta que típicamente está debajo del suelo y pueden ser raíces primarias y raíces secundarias (comparar con el tallo). Existen algunas excepciones dado que algunas raíces pueden ser epigeas (que se encuentran sobre el suelo) o aéreas (que están muy por encima del suelo o encima del agua). Como puede verse, el definir la raíz señalando únicamente donde se encuentra este órgano de la planta puede llevar a problemas por lo que es más conveniente el definir a la raíz como la parte de la planta que no tiene hojas, y que al no tener hojas tampoco tiene nudos. Las estructuras internas entre tallos y raíces son muy diferentes.
Tallo
El tallo es el órgano vegetativo de las plantas cormofitas que crece en sentido contrario al de la raíz y sirve de sus tentáculos a las hojas, flores y frutos: los rizomas son tallos subterráneos.
Yema
En botánica la yema es un órgano complejo de los vegetales que se forma habitualmente en la axila de las hojas formado por un meristemo apical, (células con capacidad de división), a modo de botón escamoso (catáfilos) que dará lugar a hojas (foliíferas) y flores (floríferas).
Hoja
Una hoja es una estructura o un órgano de las plantas especializado para la fotosíntesis. Para cumplir con su propósito, una hoja es típicamente plana y fina, con el objetivo de exponer los cloroplastos que contienen las células (chlorenchyma) a la luz sobre una amplia superficie, y permitir que la luz penetre completamente en los tejidos finos. Es en las hojas donde, en la mayoría de las plantas, ocurre la fotosíntesis, la respiración y la transpiración.
Las hojas pueden almacenar alimento y agua, y se hallan modificadas en algunas plantas para otros propósitos.
Flor
La flor es la estructura reproductiva característica de las plantas llamadas fanerógamas. La función de la flor es producir semillas a través de la reproducción sexual. Para las plantas, las semillas son la próxima generación, y sirven como el principal medio a través del cual las especies se perpetúan y se propagan. Tras la fertilización, la flor da origen, por transformación de algunas de sus partes, a un fruto que contiene las semillas.
Fruto
En las plantas angiospermas, el fruto proviene del ovario de la flor tras ser fecundado. La pared del ovario se transforma en pared del fruto y se denomina pericarpio. La función del pericarpio es proteger a la semilla.
En las plantas gimnospermas y plantas sin flores no hay verdaderos frutos, aunque a estructuras reproductivas como los conos de los pinos, comúnmente se les tome por frutos.
Semilla
La semilla es la estructura mediante la que realizan la propagación las plantas que por ello se llaman espermatófitas (plantas con semilla). La semilla se produce por la maduración de un óvulo de una gimnosperma o de una angiosperma. Una semilla contiene un embrión del que puede desarrollarse una nueva planta bajo condiciones apropiadas. Pero también contiene una fuente de alimento almacenado y está envuelto en una cubierta protectora.
Suscribirse a:
Entradas (Atom)